Abstract

Islet amyloid polypeptide (IAPP or amylin) forms amyloid deposits in the islets of Langerhans; a process that is believed to contribute to the progression of type 2 diabetes and to the failure of islet transplants. An emerging theme in amyloid research is the hypothesis that the toxic species produced during amyloid formation by different polypeptides share common features and exert their effects by common mechanisms. If correct, this suggests that inhibitors of amyloid formation by one polypeptide might be effective against other amyloidogenic sequences. IAPP and Aβ, the peptide responsible for amyloid formation in Alzheimer's disease, are particularly interesting in this regard as they are both natively unfolded in their monomeric states and share some common characteristics. Comparatively little effort has been expended on the design of IAPP amyloid inhibitors, thus it is natural to inquire if Aβ inhibitors are effective against IAPP, especially since no IAPP inhibitors have been clinically approved. A range of compounds inhibit Aβ amyloid formation, including various stereoisomers of inositol. Myo-, scyllo-, and epi-inositol have been shown to induce conformational changes in Aβ and prevent Aβ amyloid fibril formation by stabilizing non-fibrillar β-sheet structures. We investigate the ability of inositol stereoisomers to inhibit amyloid formation by IAPP. The compounds do not induce a conformational change in IAPP and are ineffective inhibitors of IAPP amyloid formation, although some do lead to modest apparent changes in IAPP amyloid fibril morphology. Thus not all classes of Aβ inhibitors are effective against IAPP. This work provides a basis of comparison to work on polyphenol based inhibitors of IAPP amyloid formation and helps provide clues as to the features which render them effective. The study also helps provide information for further efforts in rational inhibitor design.

Highlights

  • Amyloid formation plays a role in a broad range of human diseases including Alzheimer’s disease, Parkinson’s disease and type 2 diabetes (T2D) [1,2]

  • We collected the Circular Dichroism (CD) spectra again after 5 hours incubation, a time chosen to be in the middle of the lag phase, but did not observe any obvious conformational change induced by any of the four inositol stereoisomers (Figure 2)

  • The remaining three inositol stereoisomers clearly have much less effect upon IAPP amyloid formation than they do on Ab amyloid formation

Read more

Summary

Introduction

Amyloid formation plays a role in a broad range of human diseases including Alzheimer’s disease, Parkinson’s disease and type 2 diabetes (T2D) [1,2]. Islet amyloid polypeptide (IAPP or amylin) is a neuroendocrine hormone that forms amyloid deposits in the pancreatic islets of Langerhans in T2D [3,4]. The peptide normally suppresses postprandial glucagon secretion, helps regulate gastric emptying, and induces satiety, thereby complementing the effects of insulin in glycemic control, but IAPP forms islet amyloid in T2D by an unknown mechanism [5,6,7,8]. Islet amyloid formation is associated with the reduction of b cell mass in T2D and is believed to contribute to the progression of the disease [9,10,11]. The peptide aggregates aggressively in vitro and is toxic to cultured pancreatic islet b cells and islets [14]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.