Abstract
A new approach is proposed to an advantageous application of both vector Lyapunov functions and vector norms to aggregation of large-scale systems. As a result, the test of the stability property of a large-scale system is achieved without knowledge of stability properties of its subsystems. Furthermore, new completely relaxed stability conditions are established for non-stationary non-linear dynamic large-scale systems, which reduce the stability test to verification of either the Popov criterion or stability of constant matrices of order reduced to the number equal to, or possibly less than, the number of the subsystems. As by-products of the paper, linear and Aiserman conjectures are proved for classes of systems on arbitrary hierarchical level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.