Abstract

Inhibition studies of amino acids in Nicotiana silvestris suspension cells gave clues to the difficulties for obtaining mutants deficient in post prephenate pathway proteins of aromatic amino acid biosynthesis (prephenate aminotransferase, arogenate dehydrogenase and arogenate dehydratase). Such mutants, if successfully obtained, would allow gene-enzyme relationships of aromatic amino acid proteins to be studied. We found that amino acids were inhibitory toward plant cell growth, and thus were unable to rescue analog resistant mutants. Toxicity of all amino acids toward exponentially dividing Nicotiana silvestris suspension cultured cells was monitored by following growth rates. Except for L-glutamine, all 19 protein amino acids inhibited cell growth. Inhibition of growth progressed to cell deterioration. Electron microscopy showed that amino acids triggered a state of cell shrinkage that eventually degenerated to total cellular disorganization. L-glutamine was not only an effective agent for prevention of amino acid toxicity, but enhanced the final growth yield. L-glutamine also was able to completely reverse inhibition effects in cells that had been in the slowed exponential phase. Two types of inhibition occurred and we have proposed that any amino acid inhibition that can be completely antagonized by L-glutamine be called ''general amino acid inhibition''. ''Specific amino acid inhibition'' resulting from particular pathway imbalances caused by certain exogenous amino acids, can be recognized and studied in the presence of L-glutamine which can abolishes the complication effects of general amino acid inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.