Abstract

Ethanol is converted to acetaldehyde by alcohol dehydrogenase (ADH), cytochrome p4502E1 (CYP2E1) and catalase. This metabolite is then detoxified by aldehyde dehydrogenase 2 (ALDH2), a key enzyme in the elimination of acetaldehyde, via further oxidation to acetic acid. The toxic effects of acetaldehyde are well documented and may be partially mediated by genotoxic damage. In the present study, we investigated the effects of alcohol-drinking behavior and genetic polymorphisms in two different genes (ALDH2 and CYP2E1) on the micronuclei (MN) frequency in 248 healthy Japanese men. Genotyping was performed by PCR–RFLP analysis. The ALDH2 variant (deficient type) was significantly associated with an increased MN frequency in subjects drinking more than three times/wk, while habitual drinkers with wild-type CYP2E1 also had a significantly increased MN frequency. Furthermore, when the subjects were divided into eight groups according to their drinking frequency and genotypes of ALDH2 and CYP2E1, we found that habitual drinkers with homozygous CYP2E1 *1/ *1 and heterozygous ALDH2 *1/ *2 or homozygous ALDH2 *2/ *2 showed the highest mean MN frequency. In the present study, we found clear associations among ALDH2 and CYP2E1 gene polymorphisms, alcohol-drinking behavior and genotoxic effects in a healthy Japanese population. Therefore, analysis of the polymorphisms of alcohol-metabolizing enzymes may lead to elucidation of the mechanism(s) for individual susceptibilities to the toxicity of ethanol metabolites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call