Abstract
Accumulating evidence suggests that lateral transfer of nodulation capacity is an important driving force in symbiotic evolution. As a consequence, many distantly related soil bacteria have acquired the capacity to invade plants and fix nitrogen within them. In addition to these proteins required for bacteroid development and nitrogen fixation, core symbiotic competence seems to require flavonoids, NodD proteins, lipochitooligosaccharidic Nod-factors, extra-cellular polysaccharides, as well as various exported proteins. Plants respond to different levels and combinations of these substances in species specific ways. After contact has been initiated by flavonoids and NodD proteins, constant signal exchange fine-tunes these symbiotic demands, especially to overcome defence reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.