Abstract
We study a model of selection acting on a diploid population (one in which each individual carries two copies of each gene) living in one spatial dimension. We suppose a particular gene appears in two forms (alleles) A and a, and that individuals carrying AA have a higher fitness than aa individuals, while Aa individuals have a lower fitness than both AA and aa individuals. The proportion of advantageous A alleles expands through the population approximately according to a travelling wave. We prove that on a suitable timescale, the genealogy of a sample of A alleles taken from near the wavefront converges to a Kingman coalescent as the population density goes to infinity. This contrasts with the case of directional selection in which the corresponding limit is thought to be the Bolthausen-Sznitman coalescent. The proof uses ‘tracer dynamics’.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.