Abstract

As ageing and increased body fat are the signs of insulin resistance, we have studied whether the presence of Pro12Ala and C1431T of peroxisome proliferator-activated receptor gamma 2 gene and Trp64Arg of beta 3-adrenergic receptor gene may predispose to the hyperglycaemia development in postmenopausal women, who have never undergone hypoglycaemic treatment. The distributions of selected allele and genotype frequencies were determined by the PCR–RFLP method in normo- and hyperglycaemic, who have never been diagnosed and treated for diabetes mellitus were measured. The amount of body fat and lean body mass (LBM) were assessed by the bioimpedance method and nutritional habits by 7-day dietary recall. There were no differences between the distribution of genotypes and the allele frequencies of the Pro12Ala, C1431T and Trp64Arg polymorphisms in normo- and hyperglycaemic women. Hyperglycaemic women were characterized by visceral obesity, hypertension, higher serum insulin and triglycerides, higher intake of fat and lower consumption of complex carbohydrates and B vitamins. Normoglycaemic women with Pro12Pro polymorphism acquired higher energy from dietary fat (p < 0.0276) and lower energy from carbohydrates (p < 0.0480) than normoglycaemic Ala12 carriers. Subjects with Pro12Pro polymorphism and LBM > 58% of total body mass or with Trp64Trp and normal triglycerides have higher chance of normoglycaemia. Genotyping for Pro12Ala and Trp64Arg polymorphism in postmenopausal women may have the clinical benefit of predicting hyperglycaemia, thereby contributing to the prevention of diabetes mellitus development in the future. However, not only the genetic background but also the dietary habits (intake of fat, carbohydrates and B vitamins) determine the risk of hyperglycaemia.

Highlights

  • The influence of genetic and nutritional factors is underlined in the development of hyperglycaemia

  • As ageing and increased body fat are the signs of insulin resistance, we have studied whether the presence of Pro12Ala and C1431T of peroxisome proliferator-activated receptor gamma 2 gene and Trp64Arg of beta 3-adrenergic receptor gene may predispose to the hyperglycaemia development in postmenopausal women, who have never undergone hypoglycaemic treatment

  • Many researchers clearly indicate the role of peroxisome proliferator-activated receptor gamma 2 (PPARγ2) gene and beta-3 adrenergic receptor (ADRβ3) gene among the candidate genes for hyperglycaemia and development of type 2 diabetes mellitus (Altshuler et al 2000; Bell and Polonsky 2001; GrygielGórniak 2014)

Read more

Summary

Introduction

The influence of genetic and nutritional factors is underlined in the development of hyperglycaemia. Many researchers clearly indicate the role of peroxisome proliferator-activated receptor gamma 2 (PPARγ2) gene (polymorphisms: Pro12Alars1801282 and C1431Trs3856806) and beta-3 adrenergic receptor (ADRβ3) gene (polymorphism: Trp64Argrs4994) among the candidate genes for hyperglycaemia and development of type 2 diabetes mellitus (Altshuler et al 2000; Bell and Polonsky 2001; GrygielGórniak 2014). Pro12Pro polymorphism seems to predispose to diabetes mellitus, whereas the presence of Ala allele shows Bthe protective role^ of glycaemic complications (Altshuler et al 2000). The study of 3914 French Caucasians shows that the 6-year risk of hyperglycaemia was lower in Ala carriers than in Pro12Pro subjects (Jaziri et al 2006). The Trp64Arg polymorphism of ADRβ3gene is associated with insulin resistance in both diabetic (Burguete-Garcia et al 2014) and non-diabetic obese patients (de Luis et al 2007).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call