Abstract
Abstract 4168Chimeric Antigen Receptors (CAR) against CD19 have been shown to direct T cells to specifically target B-lineage malignant cells in animal models and clinical trials, with efficient tumor cell lysis. But, there has been insufficient persistence of effector cells, limiting the clinical efficacy. We propose gene transfer to hematopoietic stem/progenitor cells (HSPC) as a novel approach to ensure persistent production of effector cells targeting B-lineage malignant cells, exponentially increasing the number of effectors that may be generated against tumor cells. Experiments were performed using NOD-SCID-IL2 receptor gamma chain null (NSG) mice engrafted with human CD34+ HSPCs transduced with lentiviral vectors carrying first and second generations of CD19-specific CAR. There was efficient and stable transduction with 1–2 copies of CAR/cell as determined by qPCR. Differentiation of modified HSPC in vivo was not impaired by gene transfer, as observed in vitro. Results of in vivo studies showed that CAR-transduced human HSPC successfully differentiated into all lineages, with CAR-expressing T, NK and myeloid cells populating bone marrow, spleen and peripheral blood. The human CD19+ B cell populations normally formed in the xenografted NSG mice were significantly reduced when the transplanted HSPC were transduced with the anti-CD19 CAR, demonstrating in vivo biological activity. Cells harvested from bone marrow and spleen of mice engrafted with modified HSPC lysed CD19-positive cell targets ex vivo. Leukemic challenges of engrafted mice are in progress. Our results provide evidence for the feasibility and efficacy of the modification of HSPC with CAR as a protocol for generation of effector cells for immunotherapy against B-lineage malignancies. Disclosures:No relevant conflicts of interest to declare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.