Abstract
The R403Q mutation of human cardiac β-myosin heavy chain was the first missense mutation of a sarcomeric protein identified as being causal for hypertrophic cardiomyopathy (HCM), in humans. The direct effect of the R403Q mutant myosin on intracellular calcium homeostasis and contractility is not fully known. Here we have used in vitro gene transfer of the R403Q mutant human β-myosin to study its direct effects on single intact adult cardiac myocyte contractility and calcium homeostasis. In the first experiments, adult cardiac myocytes transduced with the R403Q mutant myosin recombinant viral vectors were compared to myocytes transduced with wild-type human β-myosin (wtMYH7). Efficiency of gene transfer was high in both groups (>98%) and the degree of stoichiometric myofilament incorporation of either the mutant or normal myosin was comparable at ∼40% in quiescent myocytes in primary culture. Sarcomere structure and cellular morphology were unaffected by R403Q myosin expression and myofilament incorporation. Functionally, in electrically paced cardiac myocytes, the R403Q mutant myosin caused a significant increase in intracellular calcium concentration and myocyte hyper-contractility. At the sub-cellular myofilament level, the mutant myosin increased the calcium sensitivity of steady state isometric tension development and increased isometric cross-bridge cycling kinetics. R403Q myocytes became arrhythmic after β-adrenergic stimulation with spontaneous calcium transients and contractions in between electrical stimuli. These results indicate that human R403Q mutant myosin directly alters myofilament function and intracellular calcium cycling. Elevated calcium levels may provide a trigger for the ensuing hypertrophy and susceptibility to arrhythmia that are characteristic of HCM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.