Abstract

Apolipoprotein (apo) B100 is an essential component of low-density lipoproteins (LDL) and lipoprotein(a) [Lp(a)]. In mammals, apoB can be edited post-transcriptionally to encode a truncated form of apoB (apoB48) that is unable to form either of these atherogenic lipoproteins. To study the effect of increasing hepatic apoB editing activity on formation of Lp(a), a recombinant adenovirus encoding rat apoBEC-1, the cytidine deaminase component of the apoB mRNA editing complex, was administered to human apoB/apo(a) transgenic mice. This resulted in expression of apoBEC-1 in hepatocytes of these mice, increased hepatic editing of human apoB mRNA, and decreased plasma levels of human apoB100 and Lp(a). The apoBEC-1 recombinant adenovirus was also administered to rabbits, an animal which, like humans, naturally lacks hepatic apoB editing. Expression of the exogenous apoBEC-1 in rabbit liver resulted in editing of up to 10% of apoB mRNA. Hepatic apoB editing was associated with lower LDL levels in these rabbits relative to those treated with a control adenovirus. However, LDL levels were elevated significantly in both animals as a result of adenovirus injection. These studies demonstrate that introduction of the cytidine deaminase apoBEC-1 is sufficient to induce hepatic apoB editing in an animal lacking this activity, and that induction of editing could serve as a novel approach for lowering plasma concentrations of the atherogenic lipoproteins Lp(a) and LDL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.