Abstract
Chicken embryos are ideal model systems for studying embryonic development as manipulations of gene function can be conducted with relative ease in ovo. The inner ear auditory sensory organ is critical for our ability to hear. It houses a highly specialized sensory epithelium that consists of mechano-transducing hair cells (HCs) and surrounding glial-like supporting cells (SCs). Despite structural differences in the auditory organs, molecular mechanisms regulating the development of the auditory organ are evolutionarily conserved between mammals and aves. In ovo electroporation is largely limited to early stages at E1 - E3. Due to the relative late development of the auditory organ at E5, manipulations of the auditory organ by in ovo electroporation past E3 are difficult due to the advanced development of the chicken embryo at later stages. The method presented here is a transient gene transfer method for targeting genes of interest at stage E4 - E4.5 in the developing chicken auditory sensory organ via in ovo micro-electroporation. This method is applicable for gain- and loss-of-functions with conventional plasmid DNA-based expression vectors and can be combined with in ovo cell proliferation assay by adding EdU (5-ethynyl-2´-deoxyuridine) to the whole embryo at the time of electroporation. The use of green or red fluorescent protein (GFP or RFP) expression plasmids allows the experimenter to quickly determine whether the electroporation successfully targeted the auditory portion of the developing inner ear. In this method paper, representative examples of GFP electroporated specimens are illustrated; embryos were harvested 18 - 96 hrafter electroporation and targeting of GFP to the pro-sensory area of the auditory organ was confirmed by RNA in situ hybridization. The method paper also provides an optimized protocol for the use of the thymidine analog EdU to analyze cell proliferation; an example of an EdU based cell proliferation assay that combines immuno-labeling and click EdU chemistry is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.