Abstract

Overexpression of the transcription factor E2F-1 induces apoptosis in a variety of carcinoma cells and inactivates murine double minute protein 2, a factor associated with poor prognosis in soft tissue sarcomas. We have shown previously that the double-stranded RNA-activated protein kinase PKR plays an important role in mediating this apoptotic response in carcinoma cells to E2F-1. We sought to evaluate the potential of E2F-1 gene therapy in soft tissue sarcomas and to study the involvement of PKR in the response to E2F-1 overexpression in mesenchymal cells. A replication-deficient adenovirus carrying the E2F-1 gene (Ad5E2F) was used to induce E2F-1 overexpression in the p53 mutated leiomyosarcoma cell line, SKLMS-1. Western blot analysis confirmed E2F-1 overexpression and up-regulation of the antiapoptotic factor Bcl-2 48 hours following infection with Ad5E2F. Apoptosis in Ad5E2F-treated cells was confirmed by fluorescence-activated cell sorting analysis and by poly(ADP-ribose) polymerase cleavage and DNA fragmentation assays. Vector-dependent up-regulation of PKR correlated with the amount of Ad5E2F-induced apoptosis. In vivo treatment of SKLMS-1 tumor-bearing BALB/c mice with intratumoral injections of Ad5E2F at a dose of 2 x 10(10) viral particles resulted in significant inhibition in tumor growth compared with control-treated animals (P < 0.016). Complete disappearance of all tumors was seen in two of seven mice in the Ad5E2F-treated animals. Immunohistochemical analysis of tumor specimens showed overexpression of E2F-1 and up-regulation of PKR in Ad5E2F-treated tumors. These findings show that adenovirus-mediated overexpression of E2F-1 results in up-regulation of PKR and significant growth suppression of leiomyosarcomas in vivo. Taken together, these data suggest that E2F-1 gene therapy and PKR modulation might be a promising treatment strategy for these tumors that are highly resistant to conventional therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.