Abstract

Liver injury induced by ischemia/reperfusion (I/R) is the prime factor in delayed or loss graft function following transplantation. CD4+ T lymphocytes are key cellular mediators of antigen-independent inflammatory response triggered by I/R. We attempted to modulate rat liver I/R injury by targeted gene therapy with CD40Ig, which blocks the CD40–CD154 costimulation pathway. One hundred percent of Ad-CD40Ig-pretreated orthotopic liver transplants (OLTs) subjected to 24 h of cold (4°C) ischemia survived >14 days (vs 50% in untreated/Ad-β-gal groups). Ad-CD40Ig treatment decreased sGOT levels and depressed neutrophil infiltration, compared with controls. These functional data correlated with histological Suzuki's grading of hepatic injury, which in untreated/Ad-β-gal groups showed severe necrosis (>60%) and moderate to severe sinusoidal congestion; the Ad-CD40Ig-pretreated group revealed minimal sinusoidal congestion/necrosis. Unlike in controls, OLT expression of mRNA coding for IL-2/IFN-γ remained depressed, whereas that of IL-4/IL-13 reciprocally increased in the Ad-CD40Ig group. Ad-CD40Ig reduced frequency of TUNEL+ cells and proapoptotic Caspase-3, but enhanced antioxidant HO-1 and antiapoptotic Bcl-2/Bcl-xl expression. Thus, prolonged blockade of CD40–CD154 by CD40Ig exerts potent cytoprotection against hepatic I/R injury. These results provide the rationale for a novel gene therapy approach to maximize the organ donor pool through the safer use of liver transplants exposed to prolonged cold ischemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call