Abstract

Somatic gene delivery approaches have received wide attention as a new technique for studying gene expression and as a potential therapeutic tool in treating both inherited and acquired diseases. Recent studies using nonviral and viral vectors have shown great promise for gene therapy in hypertensive diseases. Potential targets for prospective gene therapy in hypertension include vasopressor renin-angiotensin system components and a number of vasodilator polypeptides such as tissue kallikrein-kinin, atrial natriuretic peptide, adrenomedullin and nitric oxide synthase. Antisense inhibition with oligonucleotides or cDNAs encoding renin, angiotensinogen, angiotensin-converting enzyme and angiotensin receptors has been shown to cause a prolonged blood pressure reduction in spontaneously hypertensive rats. To evaluate the therapeutic potential of vasodilator proteins or peptides in high blood pressure, we delivered the genes encoding human tissue kallikrein, atrial natriuretic peptide, nitric oxide synthase, and adrenomedullin into hypertensive rat models and showed that a single injection resulted in a significant and sustained reduction of blood pressure for several weeks. The potency and duration of blood pressure reduction depends on the dose and the promoter of the gene administered, age and sex of the hypertensive animals as well as the vehicle used for gene delivery. Somatic gene transfer of human tissue kallikrein or atrial natriuretic peptide not only attenuated hypertension but also exerted a protective effect against salt-induced renal damage and cardiac hypertrophy in Dahl salt-sensitive rats after high salt loading. These results suggest that the application of antisense inhibition of vasopressors, or gene delivery of vasodepressors for gene therapy, may have potential in treating human hypertension, and cardiovascular and renal disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call