Abstract

Gene synthesis is a potentially powerful tool in molecular biology that has not yet reached widespread use because of the relatively high cost and labor-intensive nature of the process. This paper reviews some recent technological developments and current research activities of this laboratory which promise to greatly reduce the cost of gene synthesis and to increase the speed and efficiency of the process. We recently developed an improved device for "segmented" synthesis of oligonucleotides, which utilizes porous Teflon wafers containing derivatized controlled pore glass supports to simultaneously synthesize up to 100 different DNA sequences. The stepwise coupling efficiency with the "wafer synthesis device" is as high as that attained with current automated "gene machines" producing 1-4 oligonucleotides at a time, whereas the reagent usage is only 20-50% that of the current DNA synthesizers. At present, we are optimizing the conditions for rapid, efficient assembly of genes on a solid-phase support, wherein ordered, stepwise annealing/washing is performed to segmentally elongate a "starting" oligonucleotide attached to a solid-phase support. We expect that the wafer synthesis device (operated at reduced scale of synthesis), together with solid-phase gene assembly, will permit the synthesis and assembly of an average size gene (1 kb) in one week at a cost of less than $1000. These developments should make gene synthesis a routine and powerful tool in molecular biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.