Abstract

BackgroundThe Na+-Ca2+ exchanger (NCX) is an important regulator of cytosolic Ca2+ levels. Many of its structural features are highly conserved across a wide range of species. Invertebrates have a single NCX gene, whereas vertebrate species have multiple NCX genes as a result of at least two duplication events. To examine the molecular evolution of NCX genes and understand the role of duplicated genes in the evolution of the vertebrate NCX gene family, we carried out phylogenetic analyses of NCX genes and compared NCX gene structures from sequenced genomes and individual clones.ResultsA single NCX in invertebrates and the protochordate Ciona, and the presence of at least four NCX genes in the genomes of teleosts, an amphibian, and a reptile suggest that a four member gene family arose in a basal vertebrate. Extensive examination of mammalian and avian genomes and synteny analysis argue that NCX4 may be lost in these lineages. Duplicates for NCX1, NCX2, and NCX4 were found in all sequenced teleost genomes. The presence of seven genes encoding NCX homologs may provide teleosts with the functional specialization analogous to the alternate splicing strategy seen with the three NCX mammalian homologs.ConclusionWe have demonstrated that NCX4 is present in teleost, amphibian and reptilian species but has been secondarily and independently lost in mammals and birds. Comparative studies on conserved vertebrate homologs have provided a possible evolutionary route taken by gene duplicates subfunctionalization by minimizing homolog number.

Highlights

  • The Na+-Ca2+ exchanger (NCX) is an important regulator of cytosolic Ca2+ levels

  • Rapid growth in the number of sequenced genomes has made it possible to identify a large number of NCX genes in many species

  • Most NCX expression and function has been characterized from mammalian organisms, NCX gene presence and conservation is seen among a great variety of animal sequenced genomes

Read more

Summary

Introduction

The Na+-Ca2+ exchanger (NCX) is an important regulator of cytosolic Ca2+ levels. BMC Evolutionary Biology 2008, 8:127 http://www.biomedcentral.com/1471-2148/8/127 body of evidence that the role of NCX in cardiac excitation-contraction coupling differs with developmental and physiological states as well as between species. In the adult mammalian heart, NCX expression levels increase during heart failure and arrhythmias as an intrinsic mechanism of cardiac functional compensation, though with potentially negative side-effects [5]. The expression of NCX in cardiomyocytes is elevated in neonates, suggesting a greater role for the exchanger in early developmental stages [6]. NCX expression in teleosts fish cardiomyocytes appears higher than other vertebrates [7]. Interpretation of expression dynamics in physiological, developmental and evolutionary comparisons is complicated by the diversity in NCX homologs arising from both splice variants and gene/genome duplications

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.