Abstract

We previously reported that overexpression of SopB, an Escherichia coli F plasmid-encoded partition protein, led to silencing of genes linked to, but well-separated from, a cluster of SopB-binding sites termed sopC. We show here that in this SopB-mediated repression of sopC-linked genes, all but the N-terminal 82 amino acids of SopB can be replaced by the DNA-binding domain of a sequence-specific DNA-binding protein, provided that the sopC locus is also replaced by the recognition sequence of the DNA-binding domain. These results, together with our previous finding that the N-terminal fragment of SopB is responsible for its polar localization in cells, suggest a mechanism of gene silencing: patches of closely packed DNA-binding domains are formed if a sequence-specific DNA-binding protein is localized to specific cellular sites; such a patch can capture a DNA carrying the recognition site of the DNA-binding domain and sequestrate genes adjacent to the recognition site through nonspecific binding of DNA. The generalization of this model to gene silencing in eukaryotes is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.