Abstract
Herein, we assess the gene expression changes activated in thyroid tumors through a computational approach, using the MapReduce algorithm. Through this predictive analysis, we identified the TfR1 gene as a critical mediator of thyroid tumor progression. Then, we investigated the effect of TfR1 gene silencing through small interfering RNA (siRNA) in the expression of extracellular signal-regulated kinase 1/2 (Erk1/2) pathway and c-Myc in human differentiated follicular and undifferentiated anaplastic thyroid cancer. The expression levels of cyclin D1, p53, and p27, proteins involved in cell cycle progression, were also evaluated. The effect of TfR1 gene silencing through siRNA on the apoptotic pathway activation was also tested. Computational prediction and in vitro studies demonstrate that TfR1 plays a key role in thyroid cancer and that its downregulation was able to inhibit the ERK pathway, reducing also c-Myc expression, which blocks the cell cycle and activates the apoptotic pathway. We demonstrate that TfR1 plays a crucial role for a rapid and transient activation of the ERK signaling pathway, which induces a deregulation of genes involved in the aberrant accumulation of intracellular free iron and in drug resistance. We also suggest that TfR1 might represent an important target for thyroid cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.