Abstract

BackgroundHeterochromatin has been reported to be a major silencing compartment during development and differentiation. Prominent heterochromatin compartments are located at the nuclear periphery and inside the nucleus (e.g., pericentric heterochromatin). Whether the position of a gene in relation to some or all heterochromatin compartments matters remains a matter of debate, which we have addressed in this study. Answering this question demanded solving the technical challenges of 3D measurements and the large-scale morphological changes accompanying cellular differentiation.ResultsHere, we investigated the proximity effects of the nuclear periphery and pericentric heterochromatin on gene expression and additionally considered the effect of neighboring genomic features on a gene’s nuclear position. Using a well-established myogenic in vitro differentiation system and a differentiation-independent heterochromatin remodeling system dependent on ectopic MeCP2 expression, we first identified genes with statistically significant expression changes by transcriptional profiling. We identified nuclear gene positions by 3D fluorescence in situ hybridization followed by 3D distance measurements toward constitutive and facultative heterochromatin domains. Single-cell-based normalization enabled us to acquire morphologically unbiased data and we finally correlated changes in gene positioning to changes in transcriptional profiles. We found no significant correlation of gene silencing and proximity to constitutive heterochromatin and a rather unexpected inverse correlation of gene activity and position relative to facultative heterochromatin at the nuclear periphery.ConclusionIn summary, our data question the hypothesis of heterochromatin as a general silencing compartment. Nonetheless, compared to a simulated random distribution, we found that genes are not randomly located within the nucleus. An analysis of neighboring genomic context revealed that gene location within the nucleus is rather dependent on CpG islands, GC content, gene density, and short and long interspersed nuclear elements, collectively known as RIDGE (regions of increased gene expression) properties. Although genes do not move away/to the heterochromatin upon up-/down-regulation, genomic regions with RIDGE properties are generally excluded from peripheral heterochromatin. Hence, we suggest that individual gene activity does not influence gene positioning, but rather chromosomal context matters for sub-nuclear location.Electronic supplementary materialThe online version of this article (doi:10.1186/s13072-015-0025-5) contains supplementary material, which is available to authorized users.

Highlights

  • Heterochromatin has been reported to be a major silencing compartment during development and differentiation

  • Cellular systems for chromatin reorganization and respective gene selection based on transcriptional profiling We tackled the controversial question of whether a gene’s location within the nuclear landscape and its proximity to heterochromatin influence its activity by comparing the location of differently expressed genes obtained from transcriptional profiling analysis

  • To study the effects of heterochromatin reorganization decoupled from the general differentiation program, we used the same myoblast cell line transfected with MeCP2YFP and FACSorted (Fig. 1a; ectopic MeCP2 system)

Read more

Summary

Introduction

Heterochromatin has been reported to be a major silencing compartment during development and differentiation. Prominent heterochromatin compartments are located at the nuclear periphery and inside the nucleus (e.g., pericentric heterochromatin). Whether the position of a gene in relation to some or all heterochromatin compartments matters remains a matter of debate, which we have addressed in this study. Pericentric heterochromatin clusters are located distant from the periphery inside the nucleus. These so-called chromocenters consist of highly condensed, repetitive DNA, are mostly transcriptionally silent and have been described in mouse [18, 19], Drosophila [10] and plants [20,21,22]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call