Abstract
Gene replacement by homologous recombination (HR) is an invaluable tool in understanding the physiology and the significance of specific genes in the virulence of Mycobacterium tuberculosis. It will also allow for the development of rationally attenuated strains as candidate vaccines to prevent the spread of tuberculosis. Classically, allelic replacement involves the introduction of nonreplicating DNA (suicide plasmids) carrying a mutated copy of the targeted gene, most often disrupted by an antibiotic resistance determinant, into the chromosome. A single recombination event (cross-over) between the two alleles will result in integration of the entire plasmid to generate a single crossover (SCO) strain carrying both wild-type and mutated copies of the gene. If two recombination events occur, a double cross-over (DCO) is generated where the wild-type allele is replaced by the mutant allele. Strains with an SCO can also give rise to DCO strains when a second recombination event takes place (Fig. 1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.