Abstract
The arthropod body plan is widely believed to have derived from an ancestral form resembling Cambrian-aged fossil lobopodians, and interpretations of morphological and molecular data have long favored this hypothesis. It is possible, however, that appendages and other morphologies observed in extinct and living panarthropods evolved independently. The key to distinguishing between morphological homology and homoplasy lies in the study of developmental gene regulatory networks (GRNs), and specifically, in determining the unique genetic circuits that construct characters. In this study, I discuss character identity and panarthropod appendage evolution within a developmental GRN framework, with a specific focus on potential limb character identity networks ("ChINs"). I summarize recent molecular studies, and argue that current data do not rule out the possibility of independent panarthropod limb evolution. The link between character identity and GRN architecture has broad implications for homology assessment, and this genetic framework offers alternative approaches to fossil character coding, phylogenetic analyses, and future research into the origin of the arthropod body plan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.