Abstract

In flowering plants, male gametophyte development occurs in the anther. Tapetum, the innermost of the four anther somatic layers, surrounds the developing reproductive cells to provide materials for pollen development. A genetic pathway of DYT1-TDF1-AMS-MS188 in regulating tapetum development has been proven. Here we used laser microdissection and pressure catapulting to capture and analyze the transcriptome data for the Arabidopsis tapetum at two stages. With a comprehensive analysis by the microarray data of dyt1, tdf1, ams, and ms188 mutants, we identified possible downstream genes for each transcription factor. These transcription factors regulate many biological processes in addition to activating the expression of the other transcription factor. Briefly, DYT1 may also regulate early tapetum development via E3 ubiquitin ligases and many other transcription factors. TDF1 is likely involved in redox and cell degradation. AMS probably regulates lipid transfer proteins, which are involved in pollen wall formation, and other E3 ubiquitin ligases, functioning in degradating proteins produced in previous processes. MS188 is responsible for most cell wall-related genes, functioning both in tapetum cell wall degradation and pollen wall formation. These results propose a more complex gene regulatory network for tapetum development and function.

Highlights

  • Anther contains four locules, each with four layers of somatic cells surrounding the germ cells (Goldberg et al, 1993)

  • In Arabidopsis, DYSFUNCTIONAL TAPETUM1 (DYT1)-TAPETAL DEVELOPMENT and FUNCTION1 (TDF1)-AMS-MS188 form a genetic pathway for tapetum development and pollen wall formation (Zhu et al, 2011)

  • After laser microdissection and sequencing of tapetum cells, and integration of transcriptional profiling of dyt1, tdf1, ams, and ms188 mutants, we identified reliable tapetum expressed genes, and specific genes regulated by these transcription factors (Figure 7)

Read more

Summary

Introduction

Each with four layers of somatic cells surrounding the germ cells (Goldberg et al, 1993). The tapetum directly contacts the germ cells. It is the main tissue providing precursors for pollen development and pollen wall formation (Heslop-Harrison, 1962; Mariani et al, 1990; Ariizumi and Toriyama, 2011). Development of the tapetum is highly regulated. Tapetum cells are identified at anther stage 5 and undergo programmed cell death (PCD) in stage 10, release the contents for further pollen wall development (Sanders et al, 1999). Mature pollen forms at stage 12 (Owen and Makaroff, 1995)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call