Abstract

Genetic analyses aimed at identification of the pathways and downstream effectors of calorie restriction (CR) in the yeast Saccharomyces cerevisiae suggest the importance of central metabolism for the extension of replicative life span by CR. However, the limited gene expression studies to date are not informative, because they have been conducted using cells grown in batch culture which markedly departs from the conditions under which yeasts are grown during life span determinations. In this study, we have examined the gene expression changes that occur during either glucose limitation or elimination of nonessential-amino acids, both of which enhance yeast longevity, culturing cells in a chemostat at equilibrium, which closely mimicks conditions they encounter during life span determinations. Expression of 59 genes was examined quantitatively by real-time, reverse transcriptase polymerase chain reaction (qRT-PCR), and the physiological state of the cultures was monitored. Extensive gene expression changes were detected, some of which were common to both CR regimes. The most striking of these was the induction of tricarboxylic acid (TCA) cycle and retrograde response target genes, which appears to be at least partially due to the up-regulation of the HAP4 gene. These gene regulatory events portend an increase in the generation of biosynthetic intermediates necessary for the production of daughter cells, which is the measure of yeast replicative life span.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call