Abstract

Drosophila is a valuable system to study bone morphogenetic proteins (BMPs) due to the high functional conservation of the pathway and the molecular genetic tools available. Drosophila has three BMP ligands, decapentaplegic (BMP2/4), screw, and glass bottom boat (BMP5/6/7/8). Of these genes, the transcriptional regulation of decapentaplegic has been studied, and some of the enhancers directing its spatially specific gene expression have been described. These analyses have used many of the standard tools of molecular biology, but a valuable method of analysis often used in Drosophila is the creation of patches of mutant tissue at any stage and in any location by induced somatic recombination. The ability to create transgenic flies and manipulate the Drosophila genome with recombinases is well established. This method can be used to evaluate the requirements for specific transcription factors to act on enhancer elements in vivo, in stage- and tissue-specific manners. The yeast FLP/FRT recombination system facilitates experiments to interrogate loss- or gain-of-function for transcription factor activity on known enhancers. This chapter will outline the necessary steps to create the tools needed and conduct somatic cell recombination experiments to interrogate the function of transcription factors on BMP enhancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.