Abstract
We examine the dynamics of gene regulation for a system with K environments with each environment favoring a different pattern of gene transcription and regulation in a prokaryotic organism. We recast the model of the system as discrete-time K-periodic. This allows us to exploit the well known properties of periodic systems to characterize the steady-state behavior of wild type versus mutant populations of the organism: We also obtain conditions on the parameters of the state matrix using the properties of positive linear systems. We examine in more detail the example of the lac operon of E. Coli which has two environments: a high demand environment H and a low demand environment L. The gene regulation system alternates between the two environments as the organism completes one life cycle. We derive conditions under which the system reaches steady growth alternating between a state x <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H</inf> and x <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</inf> as each life cycle is completed. Our results show the dependence of the mutant to wild type ratio on the ratio of high demand to low demand duration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.