Abstract
In the setting of genome-wide association studies, we propose a method for assigning a measure of significance to pre-defined sets of markers in the genome. The sets can be genes, conserved regions, or groups of genes such as pathways. Using the proposed methods and algorithms, evidence for association between a particular functional unit and a disease status can be obtained not just by the presence of a strong signal from a SNP within it, but also by the combination of several simultaneous weaker signals that are not strongly correlated. This approach has several advantages. First, moderately strong signals from different SNPs are combined to obtain a much stronger signal for the set, therefore increasing power. Second, in combination with methods that provide information on untyped markers, it leads to results that can be readily combined across studies and platforms that might use different SNPs. Third, the results are easy to interpret, since they refer to functional sets of markers that are likely to behave as a unit in their phenotypic effect. Finally, the availability of gene-level P-values for association is the first step in developing methods that integrate information from pathways and networks with genome-wide association data, and these can lead to a better understanding of the complex traits genetic architecture. The power of the approach is investigated in simulated and real datasets. Novel Crohn's disease associations are found using the WTCCC data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.