Abstract

Massive multi-omics data are being used to research cancer pathogenesis at the molecular level as high-throughput sequencing technology advances. Many present approaches frequently fail to detect strongly coupled modules that are intimately associated with cancer. By combining two forms of omics data, a technique to active bio-module identification known as IdeMod is proposed, which employs gene expression and protein-protein interaction networks. IdeMod is a p-step random walk kernel regression model-based gene activity score algorithm that uses the Pareto optimum consensus (POC) method's dominance connections to generate a prioritised list of genes. IdeMod uses the SA GPROX simulated annealing technique to identify the PPI network's most linked and high-priority bio-modules. The techniques RegMod, LEAN, SigMod, ModFinder, and IdeMod were experimentally tested on real-world cervical and BRCA datasets. These findings show that the IdeMod algorithm may identify a densely linked module containing multiple genes that either promote or hinder tumour growth. The BRCA1 gene increases the likelihood of developing hereditary breast cancer associated with BRCA mutations. As a result, the IdeMod technique can be used in conjunction with other tools to detect bio-modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.