Abstract

Genetic markers have been used to assess the freezability of semen. With the advancement in molecular genetic techniques, it is possible to assess the relationships between sperm functions and gene polymorphisms. In this study, variant calling analysis of RNA-Seq datasets was used to identify single nucleotide polymorphisms (SNPs) in boar spermatozoa and to explore the associations between SNPs and post-thaw semen quality. Assessment of post-thaw sperm quality characteristics showed that 21 boars were considered as having good semen freezability (GSF), while 19 boars were classified as having poor semen freezability (PSF). Variant calling demonstrated that most of the polymorphisms (67%) detected in boar spermatozoa were at the 3’-untranslated regions (3’-UTRs). Analysis of SNP abundance in various functional gene categories showed that gene ontology (GO) terms were related to response to stress, motility, metabolism, reproduction, and embryo development. Genomic DNA was isolated from sperm samples of 40 boars. Forty SNPs were selected and genotyped, and several SNPs were significantly associated with motility and membrane integrity of frozen-thawed (FT) spermatozoa. Polymorphism in SCLT1 gene was associated with significantly higher motility and plasma membrane integrity of FT spermatozoa from boars of the GSF group compared with those of the PSF group. Likewise, polymorphisms in MAP3K20, MS4A2, and ROBO1 genes were significantly associated with reduced cryo-induced lipid peroxidation and DNA damage of FT spermatozoa from boars of the GSF group. Candidate genes with significant SNP associations, including APPL1, PLBD1, FBXO16, EML5, RAB3C, OXSR1, PRICKLE1, and MAP3K20 genes, represent potential markers for post-thaw semen quality, and they might be relevant for future improvement in the selection procedure of boars for cryopreservation. The findings of this study provide evidence indicating that polymorphisms in genes expressed in spermatozoa could be considered as factors associated with post-thaw semen quality.

Highlights

  • Cryopreservation of semen allows for prolonged storage of genetically important reproductive traits through the use of assisted reproductive techniques (ARTs), such as artificial insemination (AI) [1,2]

  • ANOVA results demonstrated that boar was a significant (p < 0.001) factor affecting post-thaw motility, mitochondrial membrane potential (MMP), plasma membrane integrity (PMI), normal apical ridge (NAR) acrosome integrity, DNA fragmentation, and lipid peroxidation (LPO)

  • Boars showing more than 30% (>30%) total motility were considered as having good semen freezability (GSF), whereas boars with motility less than 30% (

Read more

Summary

Introduction

Cryopreservation of semen allows for prolonged storage of genetically important reproductive traits through the use of assisted reproductive techniques (ARTs), such as artificial insemination (AI) [1,2]. Recent developments in high-throughput sequencing techniques, such as transcriptome sequencing (RNA-Seq), have enabled a thorough analysis of gene expression and genetic variations in the pig reproductive tract [7]. It has been confirmed that boars with poor freezability ejaculates are characterized by an overexpression of differentially expressed genes (DEGs) that are mainly associated with inflammation and apoptosis, which increase the sperm susceptibility to cryo-induced damage [8]. It should be emphasized that variant calling procedure based on RNA-Seq data has been suggested to be an important screening tool to identify polymorphisms in differentially expressed genes [7] and potential genetic markers associated with production traits in the pig industry [11]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call