Abstract

BackgroundWC1 co-receptors belong to the scavenger receptor cysteine-rich (SRCR) superfamily and are encoded by a multi-gene family. Expression of particular WC1 genes defines functional subpopulations of WC1+ γδ T cells. We have previously identified partial or complete genomic sequences for thirteen different WC1 genes through annotation of the bovine genome Btau_3.1 build. We also identified two WC1 cDNA sequences from other cattle that did not correspond to sequences in the Btau_3.1 build. Their absence in the Btau_3.1 build may have reflected gaps in the genome assembly or polymorphisms among animals. Since the response of γδ T cells to bacterial challenge is determined by WC1 gene expression, it was critical to understand whether individual cattle or breeds differ in the number of WC1 genes or display polymorphisms.ResultsReal-time quantitative PCR using DNA from the animal whose genome was sequenced (“Dominette”) and sixteen other animals representing ten breeds of cattle, showed that the number of genes coding for WC1 co-receptors is thirteen. The complete coding sequences of those thirteen WC1 genes is presented, including the correction of an error in the WC1-2 gene due to mis-assembly in the Btau_3.1 build. All other cDNA sequences were found to agree with the previous annotation of complete or partial WC1 genes. PCR amplification and sequencing of the most variable N-terminal SRCR domain (domain 1 which has the SRCR “a” pattern) of each of the thirteen WC1 genes showed that the sequences are highly conserved among individuals and breeds. Of 160 sequences of domain 1 from three breeds of cattle, no additional sequences beyond the thirteen described WC1 genes were found. Analysis of the complete WC1 cDNA sequences indicated that the thirteen WC1 genes code for three distinct WC1 molecular forms.ConclusionThe bovine WC1 multi-gene family is composed of thirteen genes coding for three structural forms whose sequences are highly conserved among individual cattle and breeds. The sequence diversity necessary for WC1 genes to function as a multi-genic pattern recognition receptor array is encoded in the genome, rather than generated by recombinatorial diversity or hypermutation.

Highlights

  • Workshop cluster 1 (WC1) co-receptors belong to the scavenger receptor cysteine-rich (SRCR) superfamily and are encoded by a multi-gene family

  • The WC1 family is composed of thirteen genes Due to gaps in the bovine genome Btau_3.1 assembly [3,26], we were uncertain whether we had identified the total complement of WC1 genes present

  • Using quantitative PCR (Q-PCR) to quantitate gene number, we showed that the WC1 immunoreceptor family comprises thirteen genes in the bovine genome, without variation in number among ten cattle breeds tested

Read more

Summary

Introduction

WC1 co-receptors belong to the scavenger receptor cysteine-rich (SRCR) superfamily and are encoded by a multi-gene family. Expression of particular WC1 genes defines functional subpopulations of WC1+ γδ T cells. Workshop cluster 1 (WC1) co-receptors belong to group B of the scavenger receptor cysteine-rich (SRCR) superfamily, as do CD163, CD5, CD6, and Spα, all of which are expressed in immune system cells [1]. The WC1.1+ and WC1.2+ mAb-defined subpopulations are largely nonoverlapping and may be functionally distinct subsets of WC1+ γδ T cells since they have different cytokine production and cellular proliferation in response to stimulation [8,9]. Since γδ TCR gene usage is not different between WC1.1+ and WC1.2+ γδ T cells [11], this may suggest that expression of particular WC1 family members directs the antigen-specific activation of γδ T cells

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call