Abstract
A preliminary step to most comparative genomics studies is the annotation of chromosomes as ordered sequences of genes. Different genetic mapping techniques often give rise to different maps with unequal gene content and sets of unordered neighboring genes. Only partial orders can thus be obtained from combining such maps. However, once a total order O is known for a given genome, it can be used as a reference to order genes of a closely related species characterized by a partial order P. Our goal is to find a linearization of P that is as close as possible to O, in term of a given genomic distance. We first prove NP-completeness complexity results considering the breakpoint and the common interval distances. We then focus on the breakpoint distance and give a dynamic programming algorithm whose running time is exponential for general partial orders, but polynomial when the partial order is derived from a bounded number of genetic maps. A time-efficient greedy heuristic is then given for the general case and is empirically shown to produce solutions within 10% of the optimal solution, on simulated data. Applications to the analysis of grass genomes are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.