Abstract

Microtubule-associated proteins 1A (MAP1A) and MAP1B are abundant neuronal MAPs thought to be involved in neurite formation and stabilization. The relative levels of MAP1A and MAP1B change dramatically during development, with MAP1B expression highest in forming neurons, and MAP1A expression highest in mature neurons. We examined the expression of light chain 3 (LC3), a subunit of both MAP1A and MAP1B, to see if its expression paralleled that of either heavy chain. Anti-LC3 immunohistochemistry reveals that LC3 in rat brain is restricted to neurons that are expressing either the MAP1A or MAP1B heavy chain. Although LC3 is expressed exclusively in cells expressing heavy chains, developmental changes in the total amount of LC3 protein are not proportional to changes in the amount of either the MAP1A or MAP1B heavy chain. LC3 protein expression measured by quantitiative immunoblotting is twice as high in postnatal brain as in embryonic and adult brain. The localization of the LC3 gene to human chromosome 20cen-q13 demonstrates that LC3 is the only MAP1 subunit that is not linked to the heavy chain genes. Because LC3 is a component of both the MAP1A and MAP1B microtubule-binding domains, the heavy-chain independent regulation of LC3 expression might modify MAP1 microtubule-binding activity during development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.