Abstract

BackgroundThe parasitic mite Varroa destructor is considered the major pest of the European honey bee (Apis mellifera) and responsible for declines in honey bee populations worldwide. Exploiting the full potential of gene sequences becoming available for V. destructor requires adaptation of modern molecular biology approaches to this non-model organism. Using a mu-class glutathione S-transferase (VdGST-mu1) as a candidate gene we investigated the feasibility of gene knockdown in V. destructor by double-stranded RNA-interference (dsRNAi).ResultsIntra-haemocoelic injection of dsRNA-VdGST-mu1 resulted in 97% reduction in VdGST-mu1 transcript levels 48 h post-injection compared to mites injected with a bolus of irrelevant dsRNA (LacZ). This gene suppression was maintained to, at least, 72 h. Total GST catalytic activity was reduced by 54% in VdGST-mu1 gene knockdown mites demonstrating the knockdown was effective at the translation step as well as the transcription steps. Although near total gene knockdown was achieved by intra-haemocoelic injection, only half of such treated mites survived this traumatic method of dsRNA administration and less invasive methods were assessed. V. destructor immersed overnight in 0.9% NaCl solution containing dsRNA exhibited excellent reduction in VdGST-mu1 transcript levels (87% compared to mites immersed in dsRNA-LacZ). Importantly, mites undergoing the immersion approach had greatly improved survival (75-80%) over 72 h, approaching that of mites not undergoing any treatment.ConclusionsOur findings on V. destructor are the first report of gene knockdown in any mite species and demonstrate that the small size of such organisms is not a major impediment to applying gene knockdown approaches to the study of such parasitic pests. The immersion in dsRNA solution method provides an easy, inexpensive, relatively high throughput method of gene silencing suitable for studies in V. destructor, other small mites and immature stages of ticks.

Highlights

  • The parasitic mite Varroa destructor is considered the major pest of the European honey bee (Apis mellifera) and responsible for declines in honey bee populations worldwide

  • The RNA interference (RNAi) mechanism involves the in vivo production of small interfering RNA molecules from larger introduced double-stranded RNA. siRNA molecules target and destroy specific mRNA, silencing the target gene at the post-transcriptional stage

  • A simple, inexpensive, high throughput method of double-stranded RNA (dsRNA) administration was established with low mortality rates for V. destructor

Read more

Summary

Introduction

The parasitic mite Varroa destructor is considered the major pest of the European honey bee (Apis mellifera) and responsible for declines in honey bee populations worldwide. Exploiting the full potential of gene sequences becoming available for V. destructor requires adaptation of modern molecular biology approaches to this non-model organism. Using a mu-class glutathione S-transferase (VdGST-mu1) as a candidate gene we investigated the feasibility of gene knockdown in V. destructor by double-stranded RNA-interference (dsRNAi). The ectoparasitic Varroa mite (Varroa destructor) is the most important pest of A. mellifera and plays a central role to honey bee losses [3]. RNA interference (RNAi) is a gene silencing technique that is becoming an ever more powerful tool in investigating the functional role of specific genes that may be potential targets for chemotherapeutic intervention. Administration of dsRNA to the invertebrate target is achieved by intrahaemocoelic injection, though immersion in solutions containing the dsRNA has been employed for nematodes and sea lice

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.