Abstract

Targeted genomic knock-ins are a valuable tool to probe gene function. However, knock-in methods involving homology-directed repair (HDR) can be laborious. Here, we adapt the mammalian CRISPaint [clustered regularly interspaced short palindromic repeat (CRISPR)-assisted insertion tagging] homology-independent knock-in method for Drosophila melanogaster, which uses CRISPR/Cas9 and nonhomologous end joining to insert "universal" donor plasmids into the genome. Using this method in cultured S2R+ cells, we efficiently tagged four endogenous proteins with the bright fluorescent protein mNeonGreen, thereby demonstrating that an existing collection of CRISPaint universal donor plasmids is compatible with insect cells. In addition, we inserted the transgenesis marker 3xP3-red fluorescent protein into seven genes in the fly germ line, producing heritable loss-of-function alleles that were isolated by simple fluorescence screening. Unlike in cultured cells, insertions/deletions always occurred at the genomic insertion site, which prevents predictably matching the insert coding frame to the target gene. Despite this effect, we were able to isolate T2A-Gal4 insertions in four genes that serve as in vivo expression reporters. Therefore, homology-independent insertion in Drosophila is a fast and simple alternative to HDR that will enable researchers to dissect gene function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.