Abstract

BackgroundATP sulfurylase (ATPS) is a crucial enzyme for the selenate assimilation pathway in plants.ResultsIn this study, genome-wide and comparative analyses of ATPS in Cardamine hupingshanensis, including sequence and structural analyses, were performed. The expression of ChATPS gene family members in C. hupingshanensis under selenium (Se) stress was also investigated, and our results suggest that ChATPS1-2 play key roles in the response to Se stress. Nine ATPS genes were found from C. hupingshanensis, which share highly conserved sequences with ATPS from Arabidopsis thaliana. In addition, we performed molecular docking of ATP sulfurylase in complex with compounds ATP, selenate, selenite, sulfate, and sulfite. ChAPS3-1 was found to have stronger binding energies with all compounds tested. Among these complexes, amino acid residues Arg, Gly, Ser, Glu, and Asn were commonly present.ConclusionOur study reveals the molecular mechanism of C. hupingshanensis ATP sulfurylase interacting with selenate, which is essential for understanding selenium assimilation. This information will guide further studies on the function of the ChATPS gene family in the selenium stress response and lay the foundation for the selenium metabolic pathway in higher plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call