Abstract

The aetiology of systemic lupus erythematosus (SLE) is complex and is known to involve both genetic and environmental factors. In a small number of patients, single-gene defects can lead to the development of SLE. Such genes include those encoding early components of the complement cascade and the 3'-5' DNA exonuclease TREX1. In addition, genome-wide association studies have identified single-nucleotide polymorphisms that confer some susceptibility to SLE. In this Review, we discuss selected examples of genes whose products have distinctly altered function in SLE and contribute to the pathogenic process. Specifically, we focus on the genes encoding integrin αM (ITGAM), IgG Fc receptors, sialic acid O-acetyl esterase (SIAE), the catalytic subunit of protein phosphatase PP2A (PPP2CA) and signalling lymphocytic activation molecule (SLAM) family members. Moreover, we highlight the changes in epigenetic signatures that occur in SLE. Such epigenetic modifications, which are abundantly present and might alter gene expression in the presence or absence of susceptibility variants, should be carefully considered when deconstructing the contribution of individual genes to the complex pathogenesis of SLE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.