Abstract

Smith-Magenis syndrome (SMS) is caused by an interstitial deletion of chromosome band 17p11.2 averaging 4-5 Mb. This deletion is likely to contain a large number of genes, each of which could potentially contribute toward the clinical phenotype. We report that the gene for topoisomerase III (hTOP3) is commonly deleted in SMS patients and maps between D17S447 and D17S258 on the short arm of chromosome 17. Cellular studies of SMS patient lymphoblasts and their respective parental cell lines were undertaken to determine the consequences of haploinsufficiency of hTOP3. Our studies indicate that hemizygosity for hTOP3 does not appreciably affect cell-cycle kinetics or activation of ionizing radiation-sensitive cell-cycle checkpoints. Furthermore, the induction of apoptosis in response to ionizing radiation in SMS and parental cells was similar. Our studies suggest that haploinsufficiency of hTOP3 does not have a major impact on the behavior of cells from SMS patients and may not play a significant role in the SMS phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.