Abstract
Inherited variations in monoamine oxidase (MAO) activity are thought to affect human behavior and expression of disease. The present study has established the chromosomal location of one of the structural genes coding for this enzyme. Mapping was carried out by somatic cell hybridization between normal human skin fibroblasts and mouse neuroblastoma cells. Selective media for growth of cells with or without hypoxanthine phosphoribosyltransferase (HPRT) activity were used to obtain hybrid lines which had retained or lost the human X chromosome, respectively. Cytogenetic techniques, isozyme analysis, and limited proteolysis and peptide mapping of [3H]pargyline-labeled MAO were used to characterize hybrid lines. With one exception, only lines containing the human X chromosome and human forms of two X-linked enzymes (phosphoglycerate kinase and glucose-6-phosphate dehydrogenase) expressed the human form of the flavin polypeptide of type A MAO. The exceptional hybrid line contained a putative translocation of part of the human X chromosome, since it expressed human forms of both MAO and phosphoglycerate kinase but neither the human form of glucose-6-phosphate dehydrogenase nor HPRT activity. This evidence indicates that the structural gene for the flavin polypeptide of MAO-A is on the human X chromosome. This represents the first chromosomal assignment of a human gene coding for an enzyme of neurotransmitter metabolism. This information will help to elucidate the structure of MAO and modes of its inheritance in the human population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.