Abstract

Background Aedes aegypti, the “yellow fever mosquito”, is the primary vector to humans of the four serotypes of dengue viruses (DENV1-4) and yellow fever virus (YFV) and is a known vector of Chikungunya virus. There are two recognized subspecies of Ae. aegypti sensu latu (s.l.): the presumed ancestral form, Ae. aegypti formosus (Aaf), a primarily sylvan mosquito in sub-Saharan Africa, and Ae. aegypti aegypti (Aaa), found globally in tropical and subtropical regions typically in association with humans. The designation of Ae. aegypti s.l. subspecies arose from observations made in East Africa in the late 1950s that the frequency of pale “forms” of Ae. aegypti was higher in populations in and around human dwellings than in those of the nearby bush. But few studies have been made of Ae. aegypti s.l. in West Africa. To address this deficiency we have been studying the population genetics, subspecies composition and vector competence for DENV-2 of Ae. aegypti s.l. in Senegal.Methods and FindingsA population genetic analysis of gene flow was conducted among 1,040 Aedes aegypti s.l. from 19 collections distributed across the five phytogeographic regions of Senegal. Adults lacking pale scales on their first abdominal tergite were classified as Aedes aegypti formosus (Aaf) following the original description of the subspecies and the remainder were classified as Aedes aegypti aegypti (Aaa). There was a clear northwest–southeast cline in the abundance of Aaa and Aaf. Collections from the northern Sahelian region contained only Aaa while southern Forest gallery collections contained only Aaf. The two subspecies occurred in sympatry in four collections north of the Gambia in the central Savannah region and Aaa was a minor component of two collections from the Forest gallery area. Mosquitoes from 11 collections were orally challenged with DENV-2 virus. In agreement with the early literature, Aaf had significantly lower vector competence than Aaa. Among pure Aaa collections, the disseminated infection rate (DIR) was 73.9% with a midgut infection barrier (MIB) rate of 6.8%, and a midgut escape barrier (MEB) rate of 19.3%, while among pure Aaf collections, DIR = 34.2%, MIB rate = 7.4%, and MEB rate = 58.4%. Allele and genotype frequencies were analyzed at 11 nuclear single nucleotide polymorphism (SNP) loci using allele specific PCR and melting curve analysis. In agreement with a published isozyme gene flow study in Senegal, only a small and statistically insignificant percentage of the variance in allele frequencies was associated with subspecies.ConclusionsThese results add to our understanding of the global phylogeny of Aedes aegypti s.l., suggesting that West African Aaa and Aaf are monophyletic and that Aaa evolved in West Africa from an Aaf ancestor.

Highlights

  • Aedes aegypti, the ‘‘yellow fever mosquito’’, is the primary vector to humans of the four serotypes of dengue viruses (DENV1-4), yellow fever virus (YFV) and is a known vector of Chikungunya virus

  • These results add to our understanding of the global phylogeny of Aedes aegypti s.l., suggesting that West African Ae. aegypti aegypti (Aaa) and Ae. aegypti formosus (Aaf) are monophyletic and that Aaa evolved in West Africa from an Aaf ancestor

  • With multiple serotypes circulating in endemic areas, 100 million infections of dengue fever (DF) occur annually, including up to 500,000 cases of the more severe form of disease called dengue hemorrhagic fever (DHF) with a case fatality rate of up to 5% [3]

Read more

Summary

Introduction

The ‘‘yellow fever mosquito’’, is the primary vector to humans of the four serotypes of dengue viruses (DENV1-4), yellow fever virus (YFV) and is a known vector of Chikungunya virus. Dengue is a major public health problem in tropical regions of the world, causing millions of dengue fever and hundreds of thousands of dengue hemorrhagic fever cases annually [1]. With multiple serotypes circulating in endemic areas, 100 million infections of dengue fever (DF) occur annually, including up to 500,000 cases of the more severe form of disease called dengue hemorrhagic fever (DHF) with a case fatality rate of up to 5% [3]. The ‘‘yellow fever mosquito’’, is the primary vector to humans of the four serotypes of dengue viruses (DENV1-4) and yellow fever virus (YFV) and is a known vector of Chikungunya virus. Few studies have been made of Ae. aegypti s.l. in West Africa To address this deficiency we have been studying the population genetics, subspecies composition and vector competence for DENV-2 of Ae. aegypti s.l. in Senegal

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call