Abstract

Gene flow was investigated in a natural population of Lotus corniculatus L. (Fabaceae) using a combination of pollen and seed dispersal studies and a recombinant DNA technique. The population is spatially heterogeneous and grows with Empetrum nigrum. L. corniculatus is pollinated by the pollen-collecting bumblebee Bombus lapidarius L. Most pollinator flights occurred within patches, as bees usually visit nearest-neighbour plants, show no marked directionality, and forage mostly within patches. Gene flow by seeds is also limited, reinforcing the pattern of gene flow within patches. However, 2.6% of pollinator flights are between patches and considerable pollen carryover also occurs. Thus, gene flow between patches is potentially sufficient to retard or prevent genetic differentiation in spite of the patchy sub-structuring of the population. A sub-set of the population was analysed for restriction fragment length polymorphisms (RFLPs) to document the actual gene flow pattern of the population. The DNA analysis revealed significant levels of genetic differentiation between the patches. The level of gene flow that can be inferred from the distribution of genetic variation is surprisingly restricted, as compared to gene flow inferred from pollinator behaviour, and emphasizes that stochastic processes like genetic drift and founder effects may have a strong impact on the prevailing genetic structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call