Abstract

Long-distance transplantation of seed material as done in restoration programs has raised concerns about the risks associated with the introduction of maladapted genotypes that may hybridize with neighboring native conspecifics and decrease local population fitness (outbreeding depression). We studied the consequences of gene flow from foreign provenances into local populations in the common grassland species Plantago lanceolata (Plantaginaceae). Three generations of intraspecific hybrids (F(1), F(2), and backcross to the local plants) were produced by controlled crossings between local plants and plants from geographically or environmentally distant populations. Their performance was compared to that of within-population crosses in a field experiment. Early growth in some interpopulation hybrids was significantly reduced, and this decrease in performance was higher in progeny of crosses with the local population from a different habitat than with geographically distant populations. At the end of the growing season, most fitness-related traits of the interpopulation hybrids were close to the average of their parents. Crosses with low-performing foreign parents therefore resulted in reduced fitness of the hybrids compared to the local plants and dilution of local adaptation. We conclude that the introduction of maladapted populations from distant or ecologically distinct environments might, at least temporarily, decrease the fitness of neighboring local plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.