Abstract

Gene duplication has long been considered an important force in genome evolution. In this article, I consider families of tandemly duplicated genes that show 'microfunctionalization' - genes encoding similar proteins with subtly different functions, such as olfactory receptors. I discuss the genomic processes giving rise to such microfunctionalized gene families and suggest that, like sites of chromosomal rearrangement and breakage, they are associated with relatively high concentrations of repetitive elements. I suggest that microfunctionalized gene families arise within gene factories: genomic regions rich in repetitive elements that undergo increased levels of unequal crossing-over.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.