Abstract

The objective of this study was to investigate the role of the Pap1 transcription factor in response to long-term Cd(2+) stress. The Schizosaccharomyces pombe wild-type strain and the Deltapap1 mutant, treated with 0.5 mM CdSO(4), were used in antioxidant enzyme and gene expression experiments. The Deltapap1 mutant proved to be sensitive to Cd(2+) in the spot test assay, suggesting that the Pap1 transcription factor plays an important role in the response to Cd(2+) stress. The Cd(2+) uptake was the same in both strains. Determination of the superoxide level in the wild-type strain proved that superoxide was generated, suggesting that long-term Cd(2+) treatment could trigger oxidative stress. Furthermore, the Deltapap1 mutant displayed higher amounts of superoxide. These results were supported by the significantly lower amount of peroxide generated in the reaction catalyzed by superoxide dismutase (SOD). The Deltapap1 mutant had a significantly lower glutathione S-transferase specific activity than that of the wild-type strain during long-term Cd(2+) stress, caused by the lower GSH and sulfide assimilation. We have demonstrated that GST III activity was not induced by Cd(2+) stress in the Deltapap1 mutant. The overall low GST activity was not sufficient for the cell to eliminate Cd(2+) caused damage and could result in a Cd(2+)-sensitive phenotype of the Deltapap1 mutant. The RT-PCR and Northern blot experiments proved that gst2 was not induced either by short-term or by long-term Cd(2+) treatment. The SPCC965.06 (a putative K(+) ion channel subunit) gene expression increased, while the hmt1 (an ABC-type vacuolar transporter protein) expression decreased in both strains. No detectable alteration in the mRNA levels of, gpx1, hmt2, sod1, sod, and trx1 was observed. SOD enzyme analyses revealed that the absence of Pap1 protein could result in a lower SODs activity and affect the sulfate assimilation. This is the first report on the fact that the Pap1 transcription factor could play an important role in the cellular post-transcriptional/post-translational enzyme activity induction processes of SODs that occur in response to Cd(2+).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.