Abstract

BackgroundAlthough the sensory drive hypothesis can explain the geographic variation in echolocation frequencies of some bat species, the molecular mechanisms underlying this phenomenon are still unclear. The three lineages of greater horseshoe bat (Rhinolophus ferrumequinum) in China (northeast, central-east, and southwest) have significant geographic variation in resting frequencies (RF) of echolocation calls. Because their cochleae have an acoustic fovea that is highly sensitive to a narrow range of frequencies, we reported the transcriptomes of cochleae collected from three genetic lineages of R. ferrumequinum, which is an ideal organism for studying geographic variation in echolocation signals, and tried to understand the mechanisms behind this bat phenomenon by analyzing gene expression and sequence variation.ResultsA total of 8190 differentially expressed genes (DEGs) were identified. We identified five modules from all DEGs that were significantly related to RF or forearm length (FL). DEGs in the RF-related modules were significantly enriched in the gene categories involved in neural activity, learning, and response to sound. DEGs in the FL-related modules were significantly enriched in the pathways related to muscle and actin functions. Using 21,945 single nucleotide polymorphisms, we identified 18 candidate unigenes associated with hearing, five of which were differentially expressed among the three populations. Additionally, the gene ERBB4, which regulates diverse cellular processes in the inner ear such as cell proliferation and differentiation, was in the largest module. We also found 49 unigenes that were under positive selection from 4105 one-to-one orthologous gene pairs between the three R. ferrumequinum lineages and three other Chiroptera species.ConclusionsThe variability of gene expression and sequence divergence at the molecular level might provide evidence that can help elucidate the genetic basis of geographic variation in echolocation signals of greater horseshoe bats.

Highlights

  • The sensory drive hypothesis can explain the geographic variation in echolocation frequencies of some bat species, the molecular mechanisms underlying this phenomenon are still unclear

  • differentially expressed genes (DEGs) related to acoustic signal traits In this study, we found that gene expression diversity among different populations and gene expression of cochleae could contribute to the resting frequencies (RF) variation of R. ferrumequinum echolocation calls

  • Using representative populations of the greater horseshoe bat in China, we obtained transcriptome data of R. ferrumequinum cochleae and analyzed gene expression and sequence data to examine gene expression changes and genotypes that contribute to geographic variation in echolocation calls

Read more

Summary

Introduction

The sensory drive hypothesis can explain the geographic variation in echolocation frequencies of some bat species, the molecular mechanisms underlying this phenomenon are still unclear. The three lineages of greater horseshoe bat (Rhinolophus ferrumequinum) in China (northeast, central-east, and southwest) have significant geographic variation in resting frequencies (RF) of echolocation calls. Because their cochleae have an acoustic fovea that is highly sensitive to a narrow range of frequencies, we reported the transcriptomes of cochleae collected from three genetic lineages of R. ferrumequinum, which is an ideal organism for studying geographic variation in echolocation signals, and tried to understand the mechanisms behind this bat phenomenon by analyzing gene expression and sequence variation. Sensory traits in animals directly impact individual fitness by affecting resource acquisition, orientation, mate choice, and species recognition. Geographic variation in these traits is usually mediated by adaptive processes rather than random processes like genetic drift [6]. The sensory drive hypothesis, which predicts a close association between the geographic variation of sensory signals and environmental variables, has been proposed to explain how environments affect signal traits and sensory systems [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call