Abstract

Previous studies have identified two tissue- and cell-specific, yet functionally redundant, sucrose synthase (SuSy) genes, Sh1 and Sus1, which encode biochemically similar isozymes, SH1 and SUS1 (previously referred to as SS1 and SS2, respectively). Here we report evidence for a third SuSy gene in maize, Sus3, which is more similar to dicot than to monocot SuSys. RNA and/or protein blot analyses on developing kernels and other tissues show evidence of expression of Sus3, although at the lowest steady-state levels of the three SuSy gene products and without a unique pattern of tissue specificity. Immunoblots of sh1sus1-1 embryos that are either lacking or deficient for the embryo-specific SUS1 protein have shown a protein band which we attribute to the Sus3 gene, and may contribute to the residual enzyme activity seen in embryos of the double mutant. We also studied developing seeds of the double mutant sh1sus1-1, which is missing 99.5% of SuSy enzyme activity, for evidence of co-regulation of several genes of sugar metabolism. We found a significant reduction in the steady-state levels of Miniature-1 encoded cell wall invertase2, and Sucrose transporter (Sut) mRNAs in the double mutant, relative to the lineage-related sh1Sus1 and sh1Sus1 kernels. Down-regulation of the Mn1 gene was also reflected in significant reductions in cell wall invertase activity. Co-regulatory changes were not seen in the expression of Sucrose phosphate synthase, UDP-glucose pyrophosphorylase, and ADP-glucose pyrophosphorylase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call