Abstract

BackgroundNRF2 is the key regulator of oxidative stress in normal cells and aberrant expression of the NRF2 pathway due to genetic alterations in the KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2 like 2)-CUL3 (cullin 3) axis leads to tumorigenesis and drug resistance in many cancers including head and neck squamous cell cancer (HNSCC). The main goal of this study was to identify specific genes regulated by the KEAP1-NRF2-CUL3 axis in HNSCC patients, to assess the prognostic value of this gene signature in different cohorts, and to reveal potential biomarkers.MethodsRNA-Seq V2 level 3 data from 279 tumor samples along with 37 adjacent normal samples from patients enrolled in the The Cancer Genome Atlas (TCGA)-HNSCC study were used to identify upregulated genes using two methods (altered KEAP1-NRF2-CUL3 versus normal, and altered KEAP1-NRF2-CUL3 versus wild-type). We then used a new approach to identify the combined gene signature by integrating both datasets and subsequently tested this signature in 4 independent HNSCC datasets to assess its prognostic value. In addition, functional annotation using the DAVID v6.8 database and protein-protein interaction (PPI) analysis using the STRING v10 database were performed on the signature.ResultsA signature composed of a subset of 17 genes regulated by the KEAP1-NRF2-CUL3 axis was identified by overlapping both the upregulated genes of altered versus normal (251 genes) and altered versus wild-type (25 genes) datasets. We showed that increased expression was significantly associated with poor survival in 4 independent HNSCC datasets, including the TCGA-HNSCC dataset. Furthermore, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and PPI analysis revealed that most of the genes in this signature are associated with drug metabolism and glutathione metabolic pathways.ConclusionsAltogether, our study emphasizes the discovery of a gene signature regulated by the KEAP1-NRF2-CUL3 axis which is strongly associated with tumorigenesis and drug resistance in HNSCC. This 17-gene signature provides potential biomarkers and therapeutic targets for HNSCC cases in which the NRF2 pathway is activated.

Highlights

  • Nuclear factor erythroid 2-related factor (NRF2) is the key regulator of oxidative stress in normal cells and aberrant expression of the NRF2 pathway due to genetic alterations in the Kelch like-ECHassociated protein 1 (KEAP1) (Kelch-like ECH-associated protein 1)-NRF2-CUL3 axis leads to tumorigenesis and drug resistance in many cancers including head and neck squamous cell cancer (HNSCC)

  • Overview of genetic alterations in the KEAP1-NRF2-CUL3axis In HNSCC, changes in the KEAP1-NRF2-CUL3 axis occurred in ~20% of patients; of these, KEAP1 alterations accounted for 4.6%, NRF2 for 11.8%, and CUL3 for

  • Association of 17-gene signature with disease-free survival (DFS), metastasis-free survival (MFS), and recurrence in HNSCC patients After analyzing the prognostic value of the 17-gene signature in the The Cancer Genome Atlas (TCGA) cohort, we evaluated its prognostic value in another 3 HNSCC cohorts containing DFS, MFS, and recurrence data

Read more

Summary

Introduction

NRF2 is the key regulator of oxidative stress in normal cells and aberrant expression of the NRF2 pathway due to genetic alterations in the KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2 like 2)-CUL3 (cullin 3) axis leads to tumorigenesis and drug resistance in many cancers including head and neck squamous cell cancer (HNSCC). NRF2 is liberated from the tight control of the KEAP1/CUL3 complex, is relocated to the nucleus where it forms heterodimers with small Maf proteins, and transactivates its downstream genes through binding with antioxidant responsive elements (AREs) [7] Genetic alterations such as mutations (gain of function mutations of NRF2 and loss of function mutations in KEAP1 and CUL3), and copy-number changes (amplification of NRF2 and deletion of KEAP1 and CUL3) leads to oncogenesis and drug- and radio-resistance in different types of cancers including HNSCC [8, 9]. Due to the dysregulated NRF2 activity in different cancers, it is emerging as a promising therapeutic target in drug discovery [10, 11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.