Abstract
BackgroundDown syndrome is a chromosomal disorder caused by the presence of three copies of chromosome 21. The mechanisms by which this aneuploidy produces the complex and variable phenotype observed in people with Down syndrome are still under discussion. Recent studies have demonstrated an increased transcript level of the three-copy genes with some dosage compensation or amplification for a subset of them. The impact of this gene dosage effect on the whole transcriptome is still debated and longitudinal studies assessing the variability among samples, tissues and developmental stages are needed.ResultsWe thus designed a large scale gene expression study in mice (the Ts1Cje Down syndrome mouse model) in which we could measure the effects of trisomy 21 on a large number of samples (74 in total) in a tissue that is affected in Down syndrome (the cerebellum) and where we could quantify the defect during postnatal development in order to correlate gene expression changes to the phenotype observed. Statistical analysis of microarray data revealed a major gene dosage effect: for the three-copy genes as well as for a 2 Mb segment from mouse chromosome 12 that we show for the first time as being deleted in the Ts1Cje mice. This gene dosage effect impacts moderately on the expression of euploid genes (2.4 to 7.5% differentially expressed). Only 13 genes were significantly dysregulated in Ts1Cje mice at all four postnatal development stages studied from birth to 10 days after birth, and among them are 6 three-copy genes. The decrease in granule cell proliferation demonstrated in newborn Ts1Cje cerebellum was correlated with a major gene dosage effect on the transcriptome in dissected cerebellar external granule cell layer.ConclusionHigh throughput gene expression analysis in the cerebellum of a large number of samples of Ts1Cje and euploid mice has revealed a prevailing gene dosage effect on triplicated genes. Moreover using an enriched cell population that is thought responsible for the cerebellar hypoplasia in Down syndrome, a global destabilization of gene expression was not detected. Altogether these results strongly suggest that the three-copy genes are directly responsible for the phenotype present in cerebellum. We provide here a short list of candidate genes.
Highlights
Down syndrome is a chromosomal disorder caused by the presence of three copies of chromosome 21
We designed a large scale gene expression study in which we could measure the effects of trisomy 21 on a large number of samples in a tissue that is affected in Down syndrome (DS) where we could quantify the defect during postnatal development in order to correlate gene expression changes with the phenotype observed
The cerebellar volume in Ts1Cje adult mice is reduced Using magnetic resonance imaging (MRI) we measured the volumes of whole brain and cerebellum of six male adult Ts1Cje and nine euploid littermates with a very high-resolution of 100 μm
Summary
Down syndrome is a chromosomal disorder caused by the presence of three copies of chromosome 21. Recent studies have demonstrated an increased transcript level of the three-copy genes with some dosage compensation or amplification for a subset of them. Even if the mean overexpression was generally reported to be close to the expected value of 1.5, recent studies in DS cell lines have reported that about 70% of the three-copy genes were significantly below the 1.5 ratio. In these particular cell lines at least, a large proportion of the chromosome 21 transcripts were compensated for the primary gene dosage effect [6,16]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.