Abstract

BackgroundEucalyptus is a highly diverse genus of the Myrtaceae family and widely planted in the world for timber and pulp production. Tissue culture induced callus has become a common tool for Eucalyptus breeding, however, our knowledge about the genes related to the callus maturation and shoot regeneration is still poor.ResultsWe set up an experiment to monitor the callus induction and callus development of two Eucalyptus species - E. camaldulensis (high embryogenic potential) and E. grandis x urophylla (low embryogenic potential). Then, we performed transcriptome sequencing for primary callus, mature callus, shoot regeneration stage callus and senescence callus. We identified 707 upregulated and 694 downregulated genes during the maturation process of the two Eucalyptus species and most of them were involved in the signaling pathways like plant hormone and MAPK. Next, we identified 135 and 142 genes that might play important roles during the callus development of E. camaldulensis and E. grandis x urophylla, respectively. Further, we found 15 DEGs shared by these two Eucalyptus species during the callus development, including Eucgr.D00640 (stem-specific protein TSJT1), Eucgr.B00171 (BTB/POZ and TAZ domain-containing protein 1), Eucgr.C00948 (zinc finger CCCH domain-containing protein 20), Eucgr.K01667 (stomatal closure-related actinbinding protein 3), Eucgr.C00663 (glutaredoxin-C10) and Eucgr.C00419 (UPF0481 protein At3g47200). Interestingly, the expression patterns of these genes displayed “N” shape in the samples. Further, we found 51 genes that were dysregulated during the callus development of E. camaldulensis but without changes in E. grandis x urophylla, such as Eucgr.B02127 (GRF1-interacting factor 1), Eucgr.C00947 (transcription factor MYB36), Eucgr.B02752 (laccase-7), Eucgr.B03985 (transcription factor MYB108), Eucgr.D00536 (GDSL esterase/lipase At5g45920) and Eucgr.B02347 (scarecrow-like protein 34). These 51 genes might be associated with the high propagation ability of Eucalyptus and 22 might be induced after the dedifferentiation. Last, we performed WGCNA to identify the co-expressed genes during the callus development of Eucalyptus and qRT-PCR experiment to validate the gene expression patterns.ConclusionsThis is the first time to globally study the gene profiles during the callus development of Eucalyptus. The results will improve our understanding of gene regulation and molecular mechanisms in the callus maturation and shoot regeneration.

Highlights

  • Eucalyptus is a highly diverse genus of the Myrtaceae family and widely planted in the world for timber and pulp production

  • In conclusion, we analyzed the transcriptome profiles of callus tissues during the maturation and shoot regeneration processes of two Eucalyptus species which have distinct vegetative propagation ability

  • We observed that the regeneration rates of the tissue culture induced callus by stem peaked at 21 days of incubation on CIM

Read more

Summary

Introduction

Eucalyptus is a highly diverse genus of the Myrtaceae family and widely planted in the world for timber and pulp production. Tissue culture induced callus has become a common tool for Eucalyptus breeding, our knowledge about the genes related to the callus maturation and shoot regeneration is still poor. Lateral organ boundaries domain (LBD) family of transcription factors (e.g., LBD16, LBD17, LBD18, LBD29) can mediate the expression of auxin response factors ARF7 and ARF19 [5, 6]. Che et al identified RAP2.6L as a key factor for shoot regeneration in Arabidopsis because the T-DNA knockdown mutations in RAP2.6L reduced the expression of many genes that are normally up-regulated during shoot development [12]. Our knowledge about the genes involved in the callus development and tissue regeneration process in plants is still poor

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call