Abstract

Gene expression programming is a full fledged genotype/phenotype system that evolves computer programs encoded in linear chromosomes of fixed length. The structural organization of the linear chromosomes allows the unconstrained and fruitful (in the sense that no invalid phenotypes will follow) operation of important genetic operators such as mutation, transposition, and recombination as the expression of each gene results always in valid programs. Although simple, the genotype/phenotype system of gene expression programming is the first artificial genotype/phenotype system with a complex and sounding translation mechanism. Indeed, the interplay between genotype (chromosomes) and phenotype (expression trees) is at the core of the tremendous increase in performance observed in gene expression programming. Furthermore, gene expression programming shares with genetic programming the same kind of tree representation and, therefore, with GEP it is possible, for one thing, to retrace easily the steps undertaken by genetic programming and, for another, to explore easily new frontiers opened up by the crossing of the phenotype threshold. In this tutorial, the fundamental differences between gene expression programming and its predecessors, genetic algorithms and genetic programming, are briefly summarized so that the evolutionary advantages of gene expression programming could be better understood. The work proceeds with a detailed description of the main players in this new algorithm, focusing mainly on the interactions between them and how the simple yet revolutionary structure of the chromosomes allows the efficient, unconstrained exploration of the search space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.