Abstract

Cordyceps sinensis (CS) has been commonly used as herbal medicine and a health supplement in China for over two thousand years. Although previous studies have demonstrated that CS has benefits in immunoregulation and anti-inflammation, the precise mechanism by which CS affects immunomodulation is still unclear. In this study, we exploited duplicate sets of loop-design microarray experiments to examine two different batches of CS and analyze the effects of CS on dendritic cells (DCs), in different physiology stages: naïve stage and inflammatory stage. Immature DCs were treated with CS, lipopolysaccharide (LPS), or LPS plus CS (LPS/CS) for two days, and the gene expression profiles were examined using cDNA microarrays. The results of two loop-design microarray experiments showed good intersection rates. The expression level of common genes found in both loop-design microarray experiments was consistent, and the correlation coefficients (Rs), were higher than 0.96. Through intersection analysis of microarray results, we identified 295 intersecting significantly differentially expressed (SDE) genes of the three different treatments (CS, LPS, and LPS/CS), which participated mainly in the adjustment of immune response and the regulation of cell proliferation and death. Genes regulated uniquely by CS treatment were significantly involved in the regulation of focal adhesion pathway, ECM-receptor interaction pathway, and hematopoietic cell lineage pathway. Unique LPS regulated genes were significantly involved in the regulation of Toll-like receptor signaling pathway, systemic lupus erythematosus pathway, and complement and coagulation cascades pathway. Unique LPS/CS regulated genes were significantly involved in the regulation of oxidative phosphorylation pathway. These results could provide useful information in further study of the pharmacological mechanisms of CS. This study also demonstrates that with a rigorous experimental design, the biological effects of a complex compound can be reliably studied by a complex system like cDNA microarray.

Highlights

  • Cordyceps sinensis (CS) is a species of parasitic fungus on the larvae of the Lepidoptera, and has been commonly used as herbal medicine and a health supplement in China for approximately two thousand years [1,2,3]

  • In each loopdesign microarray experiment, we mixed the total RNA of dendritic cells (DCs) which obtained from three different donors

  • Duplicate Sets of Loop-design Microarray Experiments Two types of replication were used in the study: (1) technical replication: identical RNA samples were performed on multiple microarrays as shown in Fig. 1; (2) biological replication: each loop-design microarray experiment was used to assay different batches of CS (Fig. 1)

Read more

Summary

Introduction

Cordyceps sinensis (CS) is a species of parasitic fungus on the larvae of the Lepidoptera, and has been commonly used as herbal medicine and a health supplement in China for approximately two thousand years [1,2,3]. Numerous pharmacological effects of CS have been reported such as anti-tumor [4,5], immunomodulatory [6,7,8], anti-inflammatory [9,10,11], and anti-oxidant properties [12,13]. CS possesses both suppressive and enhancive properties with regard to human immunity, which could be a reference to the Yin-Yang characteristics of CS described in traditional Chinese medicine [14]. Several reports have evinced this dual modality from the immunological and pharmacological perspective [7,15,16,17]. Multiple compound-based drugs may provide important combination therapies that simultaneously influence multiple pharmacological targets and provide clinical efficacy beyond that of single compound-based drugs [19]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call