Abstract

BackgroundMicrodeletion of chromosome 22q11 is associated with significant developmental anomalies, including disruption of the cardiac outflow tract, thymic/parathyroid aplasia and cleft palate. Amongst the genes within this region, TBX1 is a major candidate for many of these developmental defects. Targeted deletion of Tbx1 in the mouse has provided significant insight into the function of this transcription factor during early development of the cardiac and pharyngeal systems. However, less is known about its role during palatogenesis. To assess the influence of Tbx1 function on gene expression profile within the developing palate we performed a microarray screen using total RNA isolated from the secondary palate of E13.5 mouse embryos wild type, heterozygous and mutant for Tbx1.ResultsExpression-level filtering and statistical analysis revealed a total of 577 genes differentially expressed across genotypes. Data were clustered into 3 groups based on comparison between genotypes. Group A was composed of differentially expressed genes in mutant compared to wild type (n = 89); Group B included differentially expressed genes in heterozygous compared to wild type (n = 400) and Group C included differentially expressed genes in mutant compared to heterozygous (n = 88). High-throughput quantitative real-time PCR (RT-PCR) confirmed a total of 27 genes significantly changed between wild type and mutant; and 27 genes between heterozygote and mutant. Amongst these, the majority were present in both groups A and C (26 genes). Associations existed with hypertrophic cardiomyopathy, cardiac muscle contraction, dilated cardiomyopathy, focal adhesion, tight junction and calcium signalling pathways. No significant differences in gene expression were found between wild type and heterozygous palatal shelves.ConclusionsSignificant differences in gene expression profile within the secondary palate of wild type and mutant embryos is consistent with a primary role for Tbx1 during palatogenesis.

Highlights

  • Microdeletion of chromosome 22q11 is associated with significant developmental anomalies, including disruption of the cardiac outflow tract, thymic/parathyroid aplasia and cleft palate

  • Regulation of Tbx1 in the developing secondary palate Tbx1 transcriptional activity is present in epithelium of the secondary palate shelves throughout the processes of growth, elevation and fusion (Additional file 1) and Tbx1 mutant mice have a fully penetrant cleft palate [23, 30, 31]

  • We are interested in further defining the function of this transcription factor during palatogenesis at the molecular level and first sought to understand how Tbx1 transcription might be regulated in the palatal shelf epithelium

Read more

Summary

Introduction

Microdeletion of chromosome 22q11 is associated with significant developmental anomalies, including disruption of the cardiac outflow tract, thymic/parathyroid aplasia and cleft palate. Amongst the genes within this region, TBX1 is a major candidate for many of these developmental defects. Targeted deletion of Tbx in the mouse has provided significant insight into the function of this transcription factor during early development of the cardiac and pharyngeal systems. Less is known about its role during palatogenesis. To assess the influence of Tbx function on gene expression profile within the developing palate we performed a microarray screen using total RNA isolated from the secondary palate of E13.5 mouse embryos wild type, heterozygous and mutant for Tbx

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.